186 research outputs found

    Does memory research have a realistic future?

    Get PDF
    How do we remember our past experiences? This question remains stubbornly resistant to resolution. The next 25 years may see significant traction on this and other outstanding issues if memory researchers capitalise on exciting technological developments that allow embodied cognition to be studied in ways that closely approximate real life

    Learning to remember: The early ontogeny of episodic memory

    Get PDF
    AbstractOver the past 60 years the neural correlates of human episodic memory have been the focus of intense neuroscientific scrutiny. By contrast, neuroscience has paid substantially less attention to understanding the emergence of this neurocognitive system. In this review we consider how the study of memory development has evolved. In doing so, we concentrate primarily on the first postnatal year because it is within this time window that the most dramatic shifts in scientific opinion have occurred. Moreover, this time frame includes the critical age (∼9 months) at which human infants purportedly first begin to demonstrate rudimentary hippocampal-dependent memory. We review the evidence for and against this assertion, note the lack of direct neurocognitive data speaking to this issue, and question how demonstrations of exuberant relational learning and memory in infants as young as 3-months old can be accommodated within extant models. Finally, we discuss whether current impasses in the infant memory literature could be leveraged by making greater use of neuroimaging techniques, such as magnetic resonance imaging (MRI), which have been deployed so successfully in adults

    Release of cognitive and multimodal MRI data including real-world tasks and hippocampal subfield segmentations

    Get PDF
    We share data from N = 217 healthy adults (mean age 29 years, range 20-41; 109 females, 108 males) who underwent extensive cognitive assessment and neuroimaging to examine the neural basis of individual differences, with a particular focus on a brain structure called the hippocampus. Cognitive data were collected using a wide array of questionnaires, naturalistic tests that examined imagination, autobiographical memory recall and spatial navigation, traditional laboratory-based tests such as recalling word pairs, and comprehensive characterisation of the strategies used to perform the cognitive tests. 3 Tesla MRI data were also acquired and include multi-parameter mapping to examine tissue microstructure, diffusion-weighted MRI, T2-weighted high-resolution partial volume structural MRI scans (with the masks of hippocampal subfields manually segmented from these scans), whole brain resting state functional MRI scans and partial volume high resolution resting state functional MRI scans. This rich dataset will be of value to cognitive and clinical neuroscientists researching individual differences, real-world cognition, brain-behaviour associations, hippocampal subfields and more. All data are freely available on Dryad

    Representations of specific acoustic patterns in the auditory cortex and hippocampus

    Get PDF
    Previous behavioural studies have shown that repeated presentation of a randomly chosen acoustic pattern leads to the unsupervised learning of some of its specific acoustic features. The objective of our study was to determine the neural substrate for the representation of freshly learnt acoustic patterns. Subjects first performed a behavioural task that resulted in the incidental learning of three different noise-like acoustic patterns. During subsequent high-resolution functional magnetic resonance imaging scanning, subjects were then exposed again to these three learnt patterns and to others that had not been learned. Multi-voxel pattern analysis was used to test if the learnt acoustic patterns could be 'decoded' from the patterns of activity in the auditory cortex and medial temporal lobe. We found that activity in planum temporale and the hippocampus reliably distinguished between the learnt acoustic patterns. Our results demonstrate that these structures are involved in the neural representation of specific acoustic patterns after they have been learnt

    Posterior hippocampal CA2/3 volume is associated with autobiographical memory recall ability in lower performing individuals

    Get PDF
    People vary substantially in their capacity to recall past experiences, known as autobiographical memories. Here we investigated whether the volumes of specific hippocampal subfields were associated with autobiographical memory retrieval ability. We manually segmented the full length of the two hippocampi in 201 healthy young adults into DG/CA4, CA2/3, CA1, subiculum, pre/parasubiculum and uncus, in the largest such manually segmented subfield sample yet reported. Across the group we found no evidence for an association between any subfield volume and autobiographical memory recall ability. However, when participants were assigned to lower and higher performing groups based on their memory recall scores, we found that bilateral CA2/3 volume was significantly and positively associated with autobiographical memory recall performance specifically in the lower performing group. We further observed that this effect was attributable to posterior CA2/3. By contrast, semantic details from autobiographical memories, and performance on a range of laboratory-based memory tests, did not correlate with CA2/3 volume. Overall, our findings highlight that posterior CA2/3 may be particularly pertinent for autobiographical memory recall. They also reveal that there may not be direct one-to-one mapping of posterior CA2/3 volume with autobiographical memory ability, with size mattering perhaps only in those with poorer memory recall

    Conduction velocity along a key white matter tract is associated with autobiographical memory recall ability

    Get PDF
    Conduction velocity is the speed at which electrical signals travel along axons and is a crucial determinant of neural communication. Inferences about conduction velocity can now be made in vivo in humans using a measure called the magnetic resonance (MR) g-ratio. This is the ratio of the inner axon diameter relative to that of the axon plus the myelin sheath that encases it. Here, in the first application to cognition, we found that variations in MR g-ratio, and by inference conduction velocity, of the parahippocampal cingulum bundle were associated with autobiographical memory recall ability in 217 healthy adults. This tract connects the hippocampus with a range of other brain areas. We further observed that the association seemed to be with inner axon diameter rather than myelin content. The extent to which neurites were coherently organised within the parahippocampal cingulum bundle was also linked with autobiographical memory recall ability. Moreover, these findings were specific to autobiographical memory recall and were not apparent for laboratory-based memory tests. Our results offer a new perspective on individual differences in autobiographical memory recall ability, highlighting the possible influence of specific white matter microstructure features on conduction velocity when recalling detailed memories of real-life past experiences

    Multivoxel pattern analysis reveals 3D place information in the human hippocampus

    Get PDF
    The spatial world is three dimensional (3D) and humans and other animals move both horizontally and vertically within it. Extant neuroscientific studies have typically investigated spatial navigation on a horizontal 2D plane, leaving much unknown about how 3D spatial information is represented in the brain. Specifically, horizontal and vertical information may be encoded in the same or different neural structures with equal or unequal sensitivity. Here, we investigated these possibilities using fMRI while participants were passively moved within a 3D lattice structure as if riding a rollercoaster. Multivoxel pattern analysis was used to test for the existence of information relating to where and in which direction participants were heading in this virtual environment. Behaviorally, participants had similarly accurate memory for vertical and horizontal locations and the right anterior hippocampus (HC) expressed place information that was sensitive to changes along both horizontal and vertical axes. This is suggestive of isotropic 3D place encoding. In contrast, participants indicated their heading direction faster and more accurately when they were heading in a tilted-up or tilted-down direction. This direction information was expressed in the right retrosplenial cortex and posterior HC and was only sensitive to vertical pitch, which could reflect the importance of the vertical (gravity) axis as a reference frame. Overall, our findings extend previous knowledge of how we represent the spatial world and navigate within it by taking into account the important third dimension

    Evaluation of the Economic Burden of Psoriatic Arthritis and the Relationship Between Functional Status and Healthcare Costs

    Get PDF
    Doce imágenes de un liposarcoma metastatizado situado en el cerebro de un paciente de 44 años.Twelve pictures of a metastasized liposarcoma located in the brain of a 44-year-old male patient

    Distress in long-term head and neck cancer carers: a qualitative studyof carers’ perspectives

    Get PDF
    Aims and objectives: To identify and describe the triggers of emotional distress among long‐term caregivers (more than 1 year postdiagnosis) of people with head and neck cancer. Background: Limited research has been conducted on the factors that cause head and neck cancer caregivers to become distressed. Design: Qualitative cross‐sectional. Methods: In‐depth semi‐structured interviews. Interviews were conducted via telephone. The study setting was the Republic of Ireland. Results: Interviews were conducted with 31 long‐term caregivers (mean time since diagnosis 5·7 years, SD 2·9 years). Head and neck cancer caregivers experienced significant distress. Six key triggers of emotional distress were identified: understandings and fears of illness, lifestyle restrictions and competing demands, facial disfigurement, financial problems, comorbid health problems and witnessing suffering. Cutting across all of these individual causes of distress was a strong feeling of loss caused by head and neck cancer. Conclusions: Some head and neck cancer caregivers became considerably distressed by their caring role. Although distress appears to decline with time for many caregivers, some continue to be distressed for years following the patient's diagnosis. It would be useful for future research to explicitly investigate caregivers' experiences of lo
    corecore